Abstract

A series of porphyrin derivatives with one to four maltohexaose moieties in their meso positions have been synthesized. Zinc or free-base m-THPP (5,10,15,20-tetrakis(m-hydroxyphenyl)-porphyrin) was used as the porphyrin platform. The reaction of m-THPP with 3-iodopropyl nonadecaacetylmaltohexaoside afforded a mixture of all possible combinations of glycoconjugated porphyrins having one to four maltohexaose moieties; monoglycosylated (Ac-1), bisglycosylated (Ac-cis-2 and Ac-trans-2), triglycosylated (Ac-3), and tetraglycosylated (Ac-4) porphyrins were obtained in 11–26% yield. Removal of acetyl groups at maltohexaose moiety afforded highly water-soluble glycoconjugated porphyrins 1–4. Zinc derivatives were synthesized in a similar manner. These maltohexaose-linked porphyrins exhibit remarkable water-solublity (530 mg/mL for 4). The singlet oxygen production ability upon visible light irradiation is not affected by the maltohexaose substitution. Photo- and dark cytotoxicities of the maltohexaose-conjugated porphyrins 1–4 and Zn-1–4 were examined against a HeLa cell line, which showed that the mono-maltohexaosylated derivative (1 and Zn-1) was the most effective photosensitizer for PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call