Abstract

We have theoretically investigated a series of butadiyne-linked porphyrin derivatives that exhibit large two-photon absorption (TPA) cross sections in the visible-IR range. The electronic structure, one-photon absorption (OPA), and TPA properties have been studied in detail. We found that the introduction of a butadiyne linkage and the increase of the molecular dimensionality from monomer to dimer determine the OPA intensities of Q band and Soret band, respectively. A most important role for the enhancement of the TPA cross section is played by introducing a butadiyne bridge. The complementary coordination and the combination of the terminal free base and the core zinc porphyrin are also two effective factors for the enhancement of the TPA efficiency. The dimer with two porphyrins linked at meso-positions by a butadiyne linkage results in a maximum TPA cross section (79.35 x 10(-48) cm4 s per photon). Our theoretical findings are consistent with the recent experimental observations. This series of porphyrin derivatives as promising TPA materials are the subject of further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.