Abstract

Evidences of oseltamivir resistant influenza patients raised the need of novel neuraminidase inhibitors. In this study, five oseltamivir analogs PMC-31–PMC-36, synthesised according to the outcomes of a rational design analysis aimed to investigate the effects of substitution at the 5-amino and 4-amido groups of oseltamivir on its antiviral activity, were screened for their inhibition against neuraminidase N1 and N3. The enzymes used as models were from the avian influenza A H7N1 and H7N3 viruses. The neuraminidase inhibition assay was carried out by using recombinant species obtained from a baculovirus expression system and the fluorogenic substrate MUNANA. The assay was validated by using oseltamivir carboxylate as a reference inhibitor. Among the tested compounds, PMC-36 showed the highest inhibition on N1 with an IC50 of 14.6±3.0nM (oseltamivir 25±4nM), while PMC-35 showed a significant inhibitory effect on N3 with an IC50 of 0.1±0.03nM (oseltamivir 0.2±0.02nM). The analysis of the inhibitory properties of this panel of compounds allowed a preliminary assessment of a structure–activity relationship for the modification of the 4-amido and 5-amino groups of oseltamivir carboxylate. The substitution of the acetamido group in the oseltamivir structure with a 2-butenylamido moiety reduced the observed activity, while the introduction of a propenylamido group was well tolerated. Substitution of the free 5-amino group of oseltamivir carboxylate with an azide, decreased the activity against both N1 and N3. When these structural changes were both introduced, a dramatic reduction of activity was observed for both N1 and N3. The alkylation of the free 5-amino group in oseltamivir carboxylate introducing an isopropyl group seemed to increase the inhibitory effect for both N1 and N3 neuraminidases, displaying a more pronounced effect against N1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call