Abstract

One-dimensional CuO nanocrystals with spindly structure were successfully synthesized using pulsed wire explosion technique in deionized water. By modulating the exploding medium temperature spherical Cu nanoparticles and one-dimensional CuO nanocrystals can be selectively synthesized. At low temperature (1 °C) the particle growth is governed by Ostwald ripening resulting in formation of equidimensional crystals (spherical). As the exploding temperature increases (60 °C), oriented aggregation in a preferential direction resulted in unique spindly nanostructure. A possible crystal growth mechanism for these nanostructures with various morphologies at different exploding temperature is proposed. Particle growth by Ostwald ripening or orientated aggregation is highly dependent on exploding medium temperature. This technique uses pulsed power, hence the energy consumption is low and it does not produce any process byproducts. This study will provide a mean by which a most energy efficient and eco-friendly synthesis of one-dimensional CuO nanocrystals can be realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.