Abstract

Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) alpha7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for alpha7 nAChRs. Therefore we synthesized (R)-3'-(5-[125I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one ([125I]I-TSA) and evaluated its potential for the in vivo detection of alpha7 nAChR in brain. In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [(125)I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 mul, i.c.v.) or nonradioactive I-TSA (50 micromol/kg, i.v.). I-TSA exhibited a high affinity and selectivity for the alpha7 nAChR (K(i) for alpha7 nAChR = 0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (alpha7 nAChR-rich region) and was rather rapid in the cerebellum (alpha7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Despite its high affinity and selectivity, [125I]I-TSA does not appear to be a suitable tracer for in vivo alpha7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.