Abstract

The main objective of this study was to prepare functional allopurinol (ALP) incorporated biomaterials using mungbean starch, polyvinyl alcohol, melanin (MEL), and plasticizers. Prepared biomaterials were characterized by FE-SEM and FT-IR analysis. Photothermal conversion efficiencies and ALP release properties of biomaterials were evaluated with NIR laser irradiation. When biomaterials were irradiated with the NIR laser, temperatures increase of MEL-added biomaterials were higher than those of MEL-non-added biomaterials. After NIR laser irradiation, ALP release rates of MEL-added biomaterials were 1.62 times faster than those of MEL-non-added biomaterials. In addition, ALP release using an artificial skin was increased by NIR laser irradiation. ALP release from biomaterials followed Fickian diffusion mechanism, while ALP release using an artificial skin followed a non-Fickian diffusion mechanism. Xanthine oxidase inhibitory (%) for MEL-added biomaterials with/without the addition of GL and XL were 47.5%, 61.7%, and 65.1%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.