Abstract
Poly(A) synthesis and degradation have been examined in Escherichia coli cells made permeable to nucleotides by treatment with toluene. Although newly synthesized poly(A) is normally rapidly degraded in this system, extraction of the soluble portion of the cell effectively eliminates this process without affecting poly(A) synthesis. Poly(A) synthesis in this system displays many properties associated with poly(A) synthesis by purified poly(A) polymerase in vitro including a lag in polymerization, stimulation by increased ionic strength, and a low Mg2+ optimum. As with the purified enzyme, this system uses both ADP and ATP as substrates, requires conversion of ATP to ADP, and is strongly inhibited by dADP, orthophosphate, and pyrophosphate. In contrast to the purified poly(A) polymerase, the permeable cell system displays some properties suggestive of in vivo poly(A) metabolism. Thus, the permeable cells require an endogenous RNA primer for activity, the poly(A) product remains with the cells, and the reaction is greatly stimulated by polyamines. This system should prove extremely useful for studies of poly(A) metabolism in E. coli. A surprising feature of these studies was the finding that mutant strains deficient in polynucleotide phosphorylase were unable to synthesize poly(A). The possible roles of polynucleotide phosphorylase and poly(A) in E. coli are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.