Abstract

We report the preparation and crystal structures of bis(diallydithiocarbamato)zinc(II) and silver(I) complexes. The compounds were used as single-source precursors to prepare zinc sulfide and silver sulfide nanophotocatalysts. The molecular structure of bis(diallydithiocarbamato)zinc(II) consists of a dimeric complex in which each zinc(II) ion asymmetrically coordinates with two diallydithiocarbamato anions in a bidentate chelating mode, and the centrosymmetrically related molecule is bridged through the S-atom that is chelated to the adjacent zinc(II) ion to form a distorted trigonal bipyramidal geometry around the zinc(II) ions. The molecular structure of bis(diallydithiocarbamato)silver(I) formed a cluster complex consisting of a trimetric Ag3S3 molecule in which the diallydithiocarbamato ligand is coordinated to all the Ag(I) ions. The complexes were thermolyzed in dodecylamine, hexadecylamine, and octadecylamine (ODA) to prepare zinc sulfide and silver sulfide nanoparticles. The powder X-ray diffraction patterns of the zinc sulfide nanoparticles correspond to the hexagonal wurtzite while silver sulfide is in the acanthite crystalline phase. The high-resolution transmission electron microscopy images show that quantum dot zinc sulfide nanoparticles are obtained with particle sizes ranging between 1.98 and 5.49 nm, whereas slightly bigger silver sulfide nanoparticles are obtained with particle sizes of 2.70-13.69 nm. The surface morphologies of the ZnS and AgS nanoparticles capped with the same capping agent are very similar. Optical studies revealed that the absorption band edges of the as-prepared zinc sulfide and silver sulfide nanoparticles were blue-shifted with respect to their bulk materials with some surface defects. The zinc sulfide and silver sulfide nanoparticles were used as nanophotocatalysts for the degradation of bromothymol blue (BTB) and bromophenol blue (BPB). ODA-capped zinc sulfide is the most efficient photocatalyst and degraded 87% of BTB and 91% of BPB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.