Abstract

The conformations of aromatic amides bearing an N-(2-thienyl) or N-(3-thienyl) group were investigated in solution and in the crystal state. NMR spectral data indicate that the conformational preferences of these amides in solution are dependent not only on the relative π-electron densities of the N-aromatic moieties, but also on the three-dimensional relationship between carbonyl oxygen and the N-aromatic moieties. A comparison of the conformational preferences of N-(2-thienyl)amides and N-(3-thienyl)amides revealed that the Z-conformers of N-(2-thienyl)acetamides are stabilized by 1,5-type intramolecular S···O═C interactions between amide carbonyl and thiophene sulfur. The crystal structures of these compounds were similar to the solution structures. The stabilization energy due to 1,5-type intramolecular S···O═C interaction in N-aryl-N-(2-thienyl)acetamides and N-methyl-N-(2-thienyl)acetamide was estimated to be ca. 0.74 and 0.93 kcal/mol, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.