Abstract

Multi-color emitting phosphors will be potential in the fabrication of solid state lighting devices. Color-tunable Sr6YSc(BO3)6:Ce3+,Tb3+ phosphors were synthesized by a high temperature solid-state reaction, and the crystal structure and luminescence properties were investigated in detail. The photoluminescence excitation spectrum of Sr6YSc(BO3)6:Ce3+ show that the excitation peaks from 200 to 400 nm are attributed to the characteristic 4f-5d transitions of Ce3+, and the broad-band blue emission can be also found from the as-synthesized Sr6YSc(BO3)6:Ce3+. Under the excitation of near ultraviolet (n-UV) light, Sr6YSc(BO3)6:Ce3+,Tb3+ phosphors exhibit not only a broad blue emission band originating from the f–d transition of Ce3+ ion but also a group of sharp characteristic green emission lines from the f–f transition of Tb3+ ion, respectively. The excitation spectra monitored at 544 nm emission of Tb3+ consists of the characteristic excitation bands originating from Ce3+ and Tb3+ ions, which proves the occurrence of the energy transfer between Ce3+ and Tb3+. The energy transfer behaviors in Sr6YSc(BO3)6:Ce3+,Tb3+ phosphors is also investigated by the lifetime measurement. The above results indicate that Sr6YSc(BO3)6:Ce,Tb can act as a potential candidate for near-UV-pumped light emitting diodes.

Highlights

  • In recent years, along with the energy shortage and global warming, the development of energy saving products in the lighting field, such as white light-emitting diode (WLED), has attracted great attention [1]

  • Photoluminescence excitation (PLE) and emission (PL) spectra were performed by using a JOBIN YVON FluoroMax-3 fluorescence spectrophotometer with a photomultiplier tube operating at 400 V, and a 150 W Xe lamp used as the excitation lamp

  • All the peaks match well with the standard data of JPCDS card no. 79–2382 (Sr6YSc(BO3)6), and no other crystalline phase can be detected, indicating that all the as-synthesized samples are of single phase

Read more

Summary

Introduction

Along with the energy shortage and global warming, the development of energy saving products in the lighting field, such as white light-emitting diode (WLED), has attracted great attention [1]. Commercial WLEDs lamp is commonly fabricated by using a blue InGaN LED chip and the yellow-emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor. Such WLEDs have a poor color rendering index (CRI) and a high correlated color temperature (CCT) [7,8] because of lacking a red component. WLEDs can be fabricated by pumping blue, green and red phosphors coated on a near-UV (n-UV) LED chip which has a high CRI [9]. For this reason, it is necessary to develop novel multi-color emission phosphors in the field of optical materials

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.