Abstract

A first attempt was made to synthesize a Ni-SnO2-TiO2 nanocomposite by a one-pot simple synthetic method. A [Ni(im)6]Cl2 precursor complex is preferably adsorbed on the solid surface forming nanocomposite: complex adduct, it simultaneously becomes a surface species (Ni-SnO2-TiO2). In this investigation, it has been found that surface interaction of nickel complex ions lead to the formation of surface species that are identified by XRD, FTIR, UV–vis DRS, SEM, EDX, HRTEM, XPS, and XANES analyses. The metal-loaded metal oxide coupled semiconductor solids find their applications as catalysts and in advanced electronics. We demonstrate the dopant induced changes in electronic density of states using DFT VASP calculations. The photocatalytic property of Ni-SnO2-TiO2 sample was tested, and the results showed that a small amount of nickel surface co-doped SnO2-TiO2, formed an anatase–rutile-cassiterite mixed phases with surface defects or oxygen vacancies, and had improved the photocatalytic activity. The organic model pollutant of Azo dye and methyl orange degradation property of TiO2 photocatalyst under visible light irradiation has greatly enhanced after the introduction of Ni into the SnO2-TiO2 surface matrix. This study points out a potential way to develop new and more active tin and nickel co-doped titania photocatalysts for organic pollutant degradation in water systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call