Abstract

Metal oxide nanostructures hold great potential for photovoltaic (PV), photoelectrochemical (PEC), and photocatalytic applications. Whereas thin films of various materials of both nanoparticle and nanorod morphologies have been widely investigated, there have been few inquiries into nanodisk structures. Here, we report the synthesis of ultrathin WO3 nanodisks using a wet chemical route with poly(ethylene glycol) (PEG) as a surface modulator. The reported nanodisk structure is based on the interaction of the nonionic 10000 g/mol PEG molecules with tungsten oxoanion precursors. The WO3 nanostructures formed are dominated by very thin disks with dimensions on the nanometer to micrometer scale. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the structures to have dimensions on the order of 350-1000 nm in length, 200-750 nm in width, and 7-18 nm in thickness and possessing textured single-crystalline features. A number of analytical techniques were used to characterize the WO3 nanodisks, including selected-area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Raman scattering spectroscopy, UV-visible spectrophotometry, and cyclic voltammetry (CV). The growth of the WO3 nanodisks was inhibited in the [010] crystal direction, leading to ultrathin morphologies in the monoclinic crystal phase. The large flat surface area and high aspect ratio of the WO3 nanodisks are potentially useful in PEC cells for hydrogen production via direct water splitting, as has been demonstrated in a preliminary experiment with external bias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call