Abstract
Na2Ti3O7 and Na2Ti6O13 were synthesized by sol–gel method in order to obtain pure phases. Different heat-treatments were applied on powders and pellets of these materials. The effects were studied by XRD, dilatometry, TGA-DTA, SEM and electrochemical impedance spectroscopy. Pure Na2Ti3O7 was obtained at 973 K. Sintering at 1373 K caused a partial decomposition into Na2Ti6O13. The Na2Ti3O7 powder sintered at 1273 K showed polygonal microstructure. Na2Ti3O7 pellets sintered at 1323 K for 10 h exhibited large structures. This latter microstructure decreased the electrical conductivity of Na2Ti3O7. Pure Na2Ti6O13 was obtained at 873 K. Sintering at 1073 K caused a partial decomposition into TiO2 (rutile). Na2Ti6O13 pellets sintered at 1323 K for 10 h exhibited common shrinkage behavior. This shrinkage process increased the electrical conductivity of this material. The presence of TiO2 resulted in a oxygen partial pressure dependence of the electrical conductivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have