Abstract

Different samples of Zn1-xMnxO series have been prepared by conventional solid state sintering method. It has been identified, up to what extent of doping enable us to synthesize single-phase polycrystalline Mn doped ZnO samples which is one of the prerequisite for dilute magnetic semiconductor and we have analyzed its certain other physical aspects. In synthesizing the samples proportion of Mn varies from 1 at% to 5 at%. However the milling times have been varied (6, 12, 24, 48 & 96 hours) for only 2 at% Mn doped samples while for other samples (1, 3, 4 & 5 at% Mn doped) the milling time has been kept fixed at 96 hours. Room temperature X-Ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, no segregation of Mn and/or its oxides has been found. The 4 at% Mn doped samples show a weak peak of ZnMn2O4 apart from usual other peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping single-phase behavior is destroyed. Band gap for all the 2 at% Mn doped samples have been estimated as between 3.21 to 3.19 eV and reason for this low band gap values has been explained through the grain boundary trapping model. The room temperature resistivity measurement shows increase of resistivity up to 48 hours of milling and with further milling it saturates. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau 1), at defect site (tau 2) and average (tau av) increases with milling time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call