Abstract
Mn-doped ZnO single-crystal micronuts were synthesized via hydrothermal method in an hexamethylenetetramine aqueous solution. These micronuts are of wurtzite crystal structure. The effects of Mn doping amount and precursor concentration on the structural, optical properties and photocatalytic activity have been investigated. The synthesized Mn-doped ZnO was characterized by X-ray powder diffraction, field emission scanning electron microscopy (FESEM), UV–Vis absorption and photoluminescence spectroscopy. The structural analyses based on X-ray diffraction revealed the absence of Mn-related secondary phases. According to FESEM results, the length of ZnO micronuts was in the range of 5–8 μm. The band gap energy increased on increasing Mn doping concentration. The photocatalytic activity was studied by degradation of methyl orange aqueous solution, which showed that the Mn-doped ZnO micronuts prepared in precursor concentration of 0.1 M and 4% Mn doping had the highest photocatalytic activity. The effects of crystal defect and band gap energy on photocatalytic activity of Mn-doped ZnO samples were studied in different precursors and Mn doping amounts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.