Abstract
Synthetic saponites prepared at atmospheric pressure and at 90°C within 20 hours with Mg2+, Zn2+, Ni2+, Cu2+, and/or Co2+ in the octahedral sheets have been thermally treated under reducing and non-reducing conditions with or without the presence of steam. The thermal stability of saponite in air is investigated at temperatures up to 900 degrees Celsius. The nature of the octahedral cation largely determines the thermal stability of the saponite, which increases in the order Zn2+, Co2+, Mg2+, to Ni2+ from 450 to 800 degrees Celsius. The stability against reduction of the octahedral cations increases in the order Cu2+, Ni2+, to Co2+ from 150 to 600 degrees Celsius. The recrystallization of saponite at high temperatures is usually topotactic resulting in the formation of either pyroxene or olivine types of minerals. The reduction of saponites depends also on the nature of the octahedral cation. Cu2+ containing saponites are most easily reduced, followed by Ni2+ containing saponites. The difficult reduction of Co-saponites is possibly related to the thermal breakdown of the saponite structure. Mg- and Zn-saponites do not show any reduction up to 800 degrees Celsius. Incorporation of Mg2+ in Co2+ or Ni2+ containing saponites enhances the resistance against reduction. A fully reduced Ni-saponite shows a high dispersion of small Ni particles (10 nm) throughout the sample, whereas a fully reduced NiMg-saponite consists of large Ni particles (up to 60 nm), clustered together. The influence of steam on Mg-saponite is small, though incorporation of Zn2+ corresponding to an Mg/Zn ratio of 2 into the octahedral sheets results in a decrease of the hydrothermal stability. The drop in the stability is evidenced by a decrease in crystallinity and in a movement of aluminium from sites within the saponite structure to non-framework positions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.