Abstract

Thermal stability tests were conducted with a nitric acid (HNO3)/hydroxylammonium nitrate (HAN)/potassium fluoride (KF) solution. The solution has great potential for use in plutonium dissolution because of the small quantity of hydrogen and other offgases produced. Tests were carried out in a Reactive Systems Screening Tool (RSST). The RSST is a calorimeter equipped with temperature and pressure probes as well as a heater that can heat a liquid sample at a programmed rate. In most cases, the calorimeter was pressurized with nitrogen to reduce evaporation of the liquid sample during heating. For the proposed solution, an autocatalytic reaction occurred between 113 and 131 degrees Celsius with 300 psig or 50 psig nitrogen inside the RSST vapor space. At ambient pressure, the solution boiled at about 110 degrees Celsius. After extensive boiling, the concentrations of HNO3 and HAN increased and the autocatalytic reaction occurred. Tests were also conducted with 1000 ppm Fe present in the solution. The range of the autocatalytic reaction initiation temperature was reduced to 105-120.5 degrees Celsius. With iron at ambient pressure, boiling still occurred above 100 degrees Celsius prior to the autocatalytic reaction, which occurred at 108-109 degrees Celsius. These results demonstrated the stability of the proposed HAN flowsheet, for which the planned dissolving temperature is 50-60 degrees Celsius. Additional tests were carried out with more concentrated solutions to further characterize the autocatalytic reaction initiation temperature. Increasing the nitric acid concentration to 3M decreased the reaction initiation temperature to 102-103 degrees Celsius. Increasing the HAN concentration increased the temperature rise of the reaction from 10-30 degrees Celsius to greater than 40 degrees Celsius. Increasing both reactants-to 3M nitric acid and 0.9M HAN-yielded a reaction initiation temperature of 91 degrees Celsius (with or without iron), the lowest observed in this study. This study was the first part of a larger flowsheet development / demonstration program for the plutonium metal dissolving process. The results of the study may be useful for similar flowsheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.