Abstract

Neat poly(trimethylene terephthalate) (PTT) and PTT/modified organoclay nanocomposite with various amounts of clay were synthesized by a two-step procedure. Terephthalic acid (TPA) was reacted with 1,3-propanediol (1,3-PDO) in the esterification step. Then, polycondensation reaction resulted in the formation of PTT in the presence of tetra buthyl titanate (Ti(OC4H9)4) as a catalyst. Commercially available organoclay (Cloisite 30B) was modified using 3-aminopropyltriethoxysilane via a silylation reaction. Thermal stability of modified clay was studied by means of thermal gravimetric analysis (TGA) that showed 10% less weight loss than Cloisite 30B. PTT/organoclay nanocomposites with 0.5, 1 and 2 wt% of modified organoclay were prepared by in situ polymerization. Synthesized polyesters were characterized by Fourier-transform infrared spectroscopy and proton-nuclear magnetic resonance spectroscopy (1H-NMR). Number average molecular weights were determined by 1H-NMR and a new Mark–Houwink equation is reported for highly pure dichloroacetic acid as solvent at 25°C. Polymer’s morphology was examined with x-ray diffraction and transmission electron microscopy. It was observed that clay layers were not accumulated. Thermal properties and crystallization behavior were investigated by differential scanning calorimetry and TGA. Crystallization temperature ( Tc) of nanocomposites increased about 6°C compared to neat PTT that reflects greater overall crystallization. Modified Averami Equation was used to describe crystallization kinetics and crystal size was studied using polarized optical microscopy. It was observed that crystal size reduces with nanoclay content. PTT mostly is used as polymeric fiber. Hence, dyeability of neat PTT and nanocomposites was investigated using a spectrophotometer. About 32% increase in color uptake was determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call