Abstract

Polyacrylonitrile-co-poly(methylmethacrylate)/multiwalled carbon nanotubes (PAN-co-PMMA/MWCNTs) nanocomposites were synthesized by an in situ emulsifier-free polymerization method with variable percentages of functionalized carbon nanotube (f-MWCNT). MWCNTs were functionalized with concentrated H2SO4 and HNO3 with a continuous sonication process. Chemical interaction of f-MWCNT with the copolymer was studied by UV-visible spectroscopy. Fourier transform infrared spectroscopy proved the interaction of f-MWCNT with the PAN-co-PMMA copolymer matrix. The structural interaction of f-MWCNT with copolymer matrix was investigated by X-ray diffraction study. The dispersion and morphology of the f-MWCNT in the copolymer matrix were studied by scanning electron microscopy and high-resolution transmission electron microscopy. It was noticed that the f-MWCNTs were uniformly dispersed within the copolymer matrix. The thermal property of the PAN-co-PMMA/f-MWCNT nanocomposite was analyzed by thermogravimetric analysis. It was noticed that the thermal stability of the PAN-co-PMMA/f-MWCNT nanocomposite was more than that of the virgin copolymer matrix. When the electrical conductivity property of the synthesized nanocomposite was measured, it was noticed that the better dispersion of f-MWCNT in the non-conductive PAN-co-PMMA copolymer matrix made the PAN-co-PMMA/f-MWCNT nanocomposites conductive. From the measurement of gas barrier properties of synthesized nanocomposites, it was assumed that the well-dispersed f-MWCNT in the copolymer matrix creates the huddles for penetration of oxygen gas. It was noticed that the oxygen permeability of the PAN-co-PMMA/f-MWCNT nanocomposite was reduced by five times as compared to that of the neat PAN-co-PMMA copolymer matrix. The PAN-co-PMMA/f-MWCNT nanocomposites with higher thermal stability and reduced oxygen permeability properties may be suitable for application as conducting packaging materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.