Abstract

ABSTRACTPolyvinylpyrrolidone/hydroxyl-functionalized multiwalled carbon nanotube and sulfonyl-functionalized multiwalled carbon nanotube nanocomposites were prepared in aqueous media. The structure, morphology, and thermal characterization of the prepared nanocomposites were done by Fourier transform infrared, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry techniques. The polyvinylpyrrolidone/hydroxyl-functionalized multiwalled carbon nanotube and polyvinylpyrrolidone/sulfonyl-functionalized multiwalled carbon nanotube nanocomposites improved the thermal properties of polyvinylpyrrolidone. According to the differential scanning calorimetry analysis, the glass transition temperature of 101.6 and 84.6°C is observed for the polyvinylpyrrolidone/hydroxyl-functionalized multiwalled carbon nanotube (5% w/w) and polyvinylpyrrolidone/sulfonyl-functionalized multiwalled carbon nanotube (5% w/w) nanocomposites, respectively. The energy-dispersive X-ray spectroscopy image of polyvinylpyrrolidone/sulfonyl-functionalized multiwalled carbon nanotube (5% w/w) nanocomposite showed a homogenous distribution of sulfonyl-functionalized multiwalled carbon nanotube in the polyvinylpyrrolidone matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call