Abstract
We reported on the synthesis and detailed physicochemical characterization of poly(1-vinyltriazole)-grafted iron oxide nanoparticles. Superparamagnetic iron oxide nanoparticles (SPION) were fabricated by gel-to-crystalline conversion method. Telomerization of poly(1-vinyltriazole) on iron oxide nanoparticles was achieved via silanization process. XRD analysis confirmed the crystalline phase as magnetite, and FT-IR analysis confirmed the presence of PVTri on nanoparticles. Particle morphology was observed to be polygonic, due to the synthesis process, while average size estimated from TEM micrographs is 7nm. Agreement between crystallite size estimated from XRD and particle size from TEM affirms single crystalline character of these nanoparticles. Dependence of conductivity on temperature showed a strong evidence for thermally activated polarization mechanism. Temperature and frequency dependence of dielectric permittivity revealed interfacial polarization and temperature-assisted-reorganization effects. Magnetic evaluation showed non-saturation and superparamagnetic characteristics of nanoparticles as well as magnetic particles being single domains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have