Abstract

A new group of mesoporous silica nanoparticles (MSNs) were synthesized using combination pharmaceutical surfactants, Triton X-100 and Tween-40 as template and loaded with duloxetine hydrochloride (DX), for improving the sustained release of DX and patterns with high drug loading. Agglomerated spherical silica MSNs were synthesized by sol–gel and solvothermal methods. The calcined and drug loaded MSNs were characterized using X-ray diffraction (XRD), Braunner–Emmett–Teller (BET), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), diffuse reflectance ultraviolet–visible (DRS-UV–vis) spectroscopy. MSNs with high surface area and pore volume were selected and studied for their DX loading and release. The selected MSNs can accommodate a maximum of 34% DX within it. About 90% was released at 200h and hence, the synthesized MSNs were capable of engulfing DX and sustain its release. Further form the Ritger and Peppas, Higuchi model for mechanism drug release from all the MSN matrices follows anomalous transport or Non-Fickian diffusion with the ‘r’ and ‘n’ value 0.9 and 0.45<n<1, respectively. So, from this study it could be concluded that the MSNs synthesized using pharmaceutical templates were better choice of reservoir for the controlled delivery of drug which requires sustained release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.