Abstract

A novel spherically shaped semi-interpenetrating network (semi-IPN) hydrogel, which is based on hydrogen bond between chemical crosslinked poly( N-vinylpyrrolidone) (PVP) and linear poly(acrylic acid) (PAA), was prepared. The semi-IPN hydrogel was synthesized by three steps: (1) linear PAA with different molecular weights were obtained by a reaction of free radical polymerization used 2,2′-azo-bis-iso-butyronitrile (AIBN) as an initiator; (2) crosslinked PVP bead was obtained by a reaction of N-vinylpyrrolidone with AIBN used as an initiator and N, N′-methylene-bis-acrylamide (NNMBA) used as a crosslinker by the way of suspension polymerization; (3) complexation occurred between suitable amount of aqueous solution of PAA and the porous PVP bead and was stabilized by multiple frost–defrost, from this step the semi-IPN hydrogel was obtained. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) proved the presence of the hydrogen bond in the hydrogel. The swelling behaviour of the hydrogel was studied in buffer solution with different pH and NaCl aqueous solution. The results showed that the semi-IPN hydrogel had excellent pH-sensitivity in the range of pH from 2.25 to 4.00 and the small molecule salt had little influence on the swelling behaviour of the semi-IPN hydrogel over the range of concentration of NaCl aqueous solution investigated. The results were confirmed further by scanning electron microscope (SEM). The mechanism of swelling and deswelling was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call