Abstract

Two kinds of novel POSS cross-linkers were firstly prepared via hydrosilylation of Vinyl-POSS and trimethoxysilane. And two types of novel polydimethylsiloxane (PDMS) polymer composites as RTV silicone rubbers were prepared using Vinyl-POSS derivatives as cross-linkers in the presence of organotin catalyst. To completely exhibit superiorities of two kinds of novel cross-linkers, RTV silicone rubbers prepared with two proportions of different cross-linkers were assessed. The chemical inclusion of novel POSS into PDMS networks by hydrolytic condensation reaction was verified by attenuated total reflection (ATR) infrared spectroscopy. Morphologies, thermal properties, mechanical properties and hardness of these novel RTV silicone rubbers were studied. The results exhibited significantly enhanced effects of POSS on thermal stabilities, mechanical properties and hardness as compared to the PDMS polymers prepared with the traditional tetra-functional TMOS and TEOS cross-linkers. The striking improvements in thermal properties, mechanical properties and hardness could be attributed to the synergistic effect of the increase of dimensionality of cross-linked networks in novel RTV silicone rubbers resulting from special three-dimensional structure of novel POSS cross-linkers, plasticization of self-cross-linked POSS cross-linkers and uniform distribution of POSS cross-linkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call