Abstract

AbstractA new‐type of dicarboxylic acid was synthesized from the reaction of 2,5‐bis(4‐aminobenzylidene)cyclopentanone with trimellitic anhydride in a solution of glacial acetic acid/pyridine (Py) at refluxing temperature. Six novel heat resistance poly(amide‐imide)s (PAIs) with good inherent viscosities were synthesized, from the direct polycondensation reaction of N,N′‐[2,5‐bis(4‐aminobenzylidene)cyclopentanone]bistrimellitimide acid with several aromatic diamines, by two different methods such as direct polycondensation in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (Py) and direct polycondensation in a p‐toluene sulfonyl chloride (tosyl chloride, TsCl)/pyridine (Py)/N,N‐dimethylformamide (DMF) system. All of the above polymers were fully characterized by 1H NMR, FTIR, elemental analysis, inherent viscosity, solubility tests, UV‐vis spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and derivative of thermaogravimetric (DTG). The resulted poly(amide‐imide)s (PAIs) have showed admirable good inherent viscosities, thermal stability, and solubility. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.