Abstract

α-Lipoic acid [5-[1,2]-dithiolan-3-yl-pentanoic acid (LA)] is a natural antioxidant and cofactor of several enzymes. It increases the glucose transport activity in skeletal muscles and adipocytes in a non-insulin dependent manner. Therefore, LA is widely used in Type 2 diabetic patients as an oral auxiliary drug. However, large doses of LA (0.8–1.8 gr/day po) are required due to its unfavorable pharmacokinetic parameters. In order to improve these parameters, we synthesized ester and amide LA derivates. Two of these newly synthesized compounds, 5-[1,2]-dithiolan-3-yl-pentanoic acid 3-(5-[1,2]dithiolan-3yl-pentanoylamino)-propyl]-amide (AN-7) and 5-[1,2]-dithiolan-3-yl-pentanoic acid 3-(5-[1,2]-dithiolan-3yl-pentanoyloxy)-propyl ester (AN-8) augmented the rate glucose transport in myotubes in culture in the absence or presence of insulin. Their potency was 12-fold higher than that of the parent compound; their maximal stimulatory effect was 1.5-fold higher than that of LA. When tested in vivo in streptozotocin-diabetic C57/Black mice, AN-7 (10 mg/kg/day for 2 weeks, sc) reduced blood glucose level by 39% while a higher dose of LA (50 mg/kg/day for 2 weeks, sc) lowered it by 30%. These results indicate that AN-7 is more potent than LA in augmenting glucose transport in skeletal muscles and reducing blood glucose in diabetic animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.