Abstract

Stoichiometric nanocrystalline Ni3Al was prepared by mechanical alloying of elemental Ni and Al powders under argon gas atmosphere for different time (4-48h). The nanostructured Ni3Al powders were consolidated into bulk compacts and sintered in a small DTA furnace under flowing Argon to observe the exothermic reaction between the stoichiometric Ni and Al. The estimated crystallite size showed that the mechanically alloyed Ni3Al grain size decrease from 127 nm to 9.36nm with increasing mechanical alloying time from 4h to 48h. Agglomerations of the powder particles prevalently occurred as observed from the SEM micrographs. Saturation magnetization, Ms value of the mechanically alloyed powders decreases as milling time increases due to smaller amount of elemental nickel responding to the applied fields. Following reaction synthesis of the compacted powders, thermal profile analysis revealed the presence of exothermic peaks in the DTA curves at about 400oC. Relative densities of the sintered compact were measured and found to be from 77- 88% with the exception for the 48h mechanically alloyed sintered compact from milling balls contaminations. XRD results of the sintered compacts mechanically alloyed for 18h and above revealed the formation of pure nanocrystalline Ni3Al. Crystallites size estimations showed the occurrence of grain growth during sintering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.