Abstract

The employment of biodegradable polymer scaffolds is one of the main approaches for achieving a tissue engineered construct to reproduce bone tissues, which provide a three dimensional template to regenerate desirable tissues for different applications. The main goal of this study is to design a novel triblock scaffold reinforced with nano-hydroxyapatite (nHA) for hard tissue engineering using gas foaming/salt leaching method with minimum solvent usage. With this end in view, the biodegradable triblock copolymers of l-lactide and ε-caprolactone with different mol% were synthesized by ring-opening polymerization method in the presence of Sn(Oct)2 catalyst as initiator and ethylene glycol as co-initiator. The chemical compositions of biodegradable copolymers were characterized by means of FTIR and NMR. The thermal and crystallization behaviors of copolymers were characterized using TGA and DSC thermograms. Moreover, nano-hydroxyapatite was synthesized by the chemical precipitation process and was thoroughly characterized by FTIR, XRD and TEM. Additionally, the nanocomposites with different contents of nHA were prepared by mixing triblock copolymer with nHA. Mechanical properties of the prepared nanocomposites were evaluated by stress–strain measurements. It was found that the nanocomposite with 30% of nHA showed the optimum result. Therefore, nanocomposite scaffolds with 30% nHA were fabricated by gas foaming/salt leaching method and SEM images were used to observe the microstructure and morphology of nanocomposites and nanocomposite scaffolds before and after cell culture. The in-vitro and cell culture tests were also carried out to further evaluate the biological properties. The results revealed that the porous scaffolds were biocompatible to the osteoblast cells because the cells spread and grew well. The resultant nanocomposites could be considered as good candidates for use in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.