Abstract

Lithium fluoride (LiF) produced in single crystals and doped with proper activators is a highly sensitive phosphor used in several applications such as integrated optics, colour centre laser and radiation dosimetry. In this work, we have developed a new synthetic chemical co-precipitation route for the synthesis of well-crystallized micro- and nanocrystalline cubes of pure and silver (Ag)-doped LiF. The as-synthesized samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. Size of the produced cubes could be controlled in the range 10 µm–50 nm by varying the solvent : co-solvent ratio. Micro-sized cubes could be grown in the presence of water as a solvent, while ethanol, which acts as a co-solvent, is found to be effective in reducing the size to the nanoscale. XRD results show complete crystalline structures in a griceite phase. The PL result of pure nanocubes exhibits a broad band in the range 370–550 nm, while that doped with Ag shows a prominent band at 420 nm. Raman spectra of the pure and Ag-doped LiF samples display several bands located in the range 80–236 cm−1. These results show that pure nanocubes of LiF have active colour centres without irradiation, which could be enhanced/modified by Ag dopants. This implies that these nanocubes might be useful in the development of optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.