Abstract

The advancement of adsorption technology is highly dependent on the characteristics of the adsorbents used. However, the commonly used one-dimensional (1D) MCM-41 and two-dimensional (2D) SBA-15 were found to induce gas diffusion difficulty. With this, MSU-2 was introduced as it shows high potentiality to be employed as CO2 adsorbent due to its excellent properties such as the highly interconnected three-dimensional (3D) wormhole-like framework structure as well as large specific surface area, total pore volume and pore size. The focus of the current study focuses on the synthesis of MSU-2 and the investigation on the CO2 adsorption capacity of the synthesized MSU-2 at various temperatures and pressures. The preparation of the MSU-2 was achieved by fluoride-assisted two-step process of solution precipitation method involving the addition of tetraethylorthosilicate (TEOS) to the acidified aqueous solution of nonionic surfactant, Triton X-100. The resultant MSU-2 was characterized by SEM, TEM, SAP analyser, XRD, FTIR spectrometer and TGA. The analyzed results showed that MSU-2 with desired features was successfully synthesized. The CO2 gas adsorption studies of the MSU-2 was demonstrated at different temperatures (25 °C and 85 °C) and different pressures (1 bar and 5 bar) to study the effect of temperatures and pressures on the CO2 adsorption capacity of the MSU-2. The highest CO2 adsorption capacity of the MSU-2 was found to be 0.98 mmol-CO2/g-adsorbent when the operating conditions were set at 25 °C and 5 bar. This adsorption experiment also deduced that low adsorption temperature and high operating pressure promote adsorption process which give higher CO2 adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call