Abstract

Mononuclear palladium(II) complexes 1–12, (C6H4X-4)PdXʹ(PR3)2 (X = I, Br, or Cl; Xʹ = I or Br; R = Ph, Cy, Et, or Me), were synthesized by oxidative addition of 1,4-dihalogenated benzene to Pd(PR3)4; dinuclear palladium(II) complexes 13–15, (Me3P)2XPd(C6H4-1,4)PdXʹ(PMe3)2 (X, Xʹ = I or Br), could be obtained only using trimethylphosphine. Another method to prepare 13–15 is via re-oxidative addition of the corresponding mononuclear palladium(II) complexes and Pd(PMe3)4. Using 4,4′-dibromobiphenyl as the starting material, the mononuclear palladium(II) complexes [C6H4(C6H4Br-4)-4]PdBr(PPh3)2 (16) and [C6H4(C6H4Br-4)-4]PdBr(PCy3)2 (17) with bulky phosphines could be synthesized at relative low temperature, while dinuclear 18, (Cy3P)2BrPd(C6H4C6H4-4,4ʹ)PdBr(PCy3)2, was prepared by bis-oxidative addition at higher temperature. The re-oxidative addition of 16 and Pd(PMe3)4 gave dinuclear 19, (Me3P)2BrPd(C6H4C6H4-4,4ʹ)PdBr(PMe3)2, accompanying phosphine exchange. X-ray diffraction analysis revealed that formation of dinuclear palladium(II) complexes depends on the reaction temperature, phosphine ligands, and bridging groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call