Abstract

Emerging applications such as gas storage require porous carbon materials with tailored structural and surface properties. Template synthesis approach to porous carbons offers opportunities for tailoring these properties. In this study, ammonium-form zeolite Y (NH 4Y) was used as a template and furfuryl alcohol (FA) was employed as a carbon precursor to prepare microporous carbons by simple impregnation method. The effects of synthesis conditions such as carbonization temperatures and heating rates on the pore structure of the microporous carbons were investigated. The thermal behaviors of FA–NH 4Y mixtures and zeolite/carbon composites were studied by thermogravimetric analysis (TGA). The physical, structural, and surface properties of the microporous carbons were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), elemental analysis, and physical adsorption of nitrogen. Microporous carbons with high surface areas, pore volumes and nitrogen-containing surface functional groups can be readily synthesized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call