Abstract

Abstract New routes to vanadium sesquioxide and tantalum oxide nitride (γ- and δ-phase) are presented. Phase pure V2O3 with bixbyite-type structure, a metastable polymorph, was obtained from vanadium fluoride hydrates at ~750 K. It crystallizes in the cubic crystal system in space group I a 3 ¯ $Ia\bar 3$ with lattice parameter a=939.30(5) pm. The catalytical properties of the corresponding oxide nitride phases and their oxidation and reduction solid-state kinetics were investigated. The preparation of γ-TaON as a phase pure sample can be realized by ammonolysis of X-ray amorphous tantalum oxide precursors at 1073 K. This metastable tantalum oxide nitride crystallizes in the monoclinic VO2(B)-type structure in space group C2/m. The same precursors can be used to synthesize the δ-modification with an anatase-type structure at 1023 K. It crystallizes in the tetragonal crystal system in space group I41/amd. A maximum yield of 82 m % could be obtained. The fundamental band gaps of the synthesized and of other metastable TaON polymorphs were calculated from first principles using the GW method. The present results are compared to experimental data and to previous calculations at hybrid DFT level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.