Abstract

A two-component material (Fe3O4@CaSiO3) with an Fe3O4 magnetite core and layered porous CaSiO3 shell from calcium nitrate and sodium silicate was synthesized by precipitation. The structure, morphology, magnetic properties, and composition of the Fe3O4@CaSiO3 composite were characterized in detail, and its adsorption performance, adsorption kinetics, and recyclability for Cu2+, Ni2+, and Cr3+ adsorption were studied. The Fe3O4@CaSiO3 composite has a 2D core-layer architecture with a cotton-like morphology, specific surface area of 41.56m2/g, pore size of 16nm, and pore volume of 0.25cm3/g. The measured magnetization saturation values of the magnetic composite were 57.1emu/g. Data of the adsorption of Cu2+, Ni2+, and Cr3+ by Fe3O4@CaSiO3 fitted the Redlich-Peterson and pseudo-second-order models well, and all adsorption processes reached equilibrium within 150min. The maximum adsorption capacities of Fe3O4@CaSiO3 toward Cu2+, Ni2+, and Cr3+ were 427.10, 391.59, and 371.39mg/g at an initial concentration of 225mg/L and a temperature of 293K according to the fitted curve with the Redlich-Peterson model, respectively. All adsorption were spontaneous endothermic processes featuring an entropy increase, including physisorption, chemisorption, and ion exchange; among these process, chemisorption was the primary mechanism. Fe3O4@CaSiO3 exhibited excellent adsorption, regeneration, and magnetic separation performance, thereby demonstrating its potential applicability to removing heavy metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.