Abstract

Advancement in materials science and manufacturing processes helps in expanding the application span of materials in biotechnology. The technological development of biocompatible materials aids in improving health conditions, cancerous treatment, organ implants, and as well as provides several techniques to patient treatment. Hydroxyapatite (HAP) is considered as a potential material for orthopedics and dental implants due to its eminent biocompatibility and natural apatite characteristics. It is regarded as viable and cost effective solution of many biomedical applications. Major challenges in expanding the application span of HAP include obtaining optimum mechanical, chemical, and biological properties simultaneously while making its manufacturing processes cost effective. The main purpose of the current work is to synthesize and characterize high strength HAP with high degree of crystallinity and purity, which could be able to fulfill the requirements of modern biological materials. In this work, egg-shell which is considered as garbage is utilized as calcium source to synthesize HAP. Initially, egg-shells are properly cleaned with distilled water and dried. Ball milling operation is used to produce egg-shell particles of nano to micron range. The particles then mixed with controlled amount of phosphoric acid. The mixture is then sintered by heat treating at 900°C for 2 hours. The heat treatment (sintering) process is used to enhance the density as well as strength of egg-shell material. After synthesis of HAP, it is characterized through X-ray diffraction, scanning electron microscopy, and laser particle analyzer. Composition of HAP is investigated through XRD. Furthermore, surface topography of nano-crystalline HAP powder is measured through Scanning Electron Microscope while particle size distribution is found through laser particle analyzer. It is found that the addition of phosphoric acid in milled egg-shell and heat treatment give rise HAP in the sample. In addition, particle size varies from hundreds of nanometers to several micrometers. The results and analysis of the current work may provide insight of different properties which may lead to the development of optimum and cost effective HAP material. The current study could be further extended in increasing application envelop of biocompatible materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call