Abstract

Bone transplantation is the second most common transplantation surgery in the world. Therefore, there is an urgent need for artificial bone transplantation to repair bone defects. In bone tissue engineering, hydroxyapatite (HA) plays a major role in bone graft applications. This study deals with a facile method for synthesizing HA hexagonal nanorods from seashells by a solid-state hydrothermal transition process. The synthesized HA nanorods (∼2.29 nm) were reinforced with carbon nanotube and chitosan on graphene oxide sheets with polymeric support by in-situ synthetic approach. Among the synthesized nanocomposites viz., hydroxyapatite-graphene oxide (HA-GO), hydroxyapatite-graphene oxide-chitosan (HA-GO-CS), hydroxyapatite-graphene oxide-chitosan-carbon nanotube-polylactic acid (HA-GO–CS–CNT-PLA). Among them, the HA-GO–CS–CNT-PLA composite exhibits micro and macro porosity (∼200 to 600 μm), higher mechanical strength, (Hardness ∼90.5 ± 1.33 MPa; Tensile strength 25.62 MPa), and maximum cell viability in MG63 osteoblast-like cells (80%). The self-assembled hybrid-nanocomposite of HA-GO–CS–CNT-PLA is a promising material for bone filler application and could efficiently utilize seashell waste through the green process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.