Abstract

Hybrid Polymer composites have recently emerged as one of the most important fields for researchers owing to their weight reduction benefits, corrosion resistance, design flexibility, manufacturing developments, multidiscipline applications, and sustainability. There are many types of hybrid polymer composites, one of which is made up of combining natural polymers and synthetic polymers and the other which is made up of combining natural-natural polymers. Hybrid composites also consist of nanocomposites, molecular composites, nanomaterials, and mesoscopic materials. In present study, hybrid polymer matrix composites reinforced with copper particulate were prepared using polycarbonate (PC), acrylonitrile butadiene styrene (ABS), and polycarbonate plus ABS. Injection moulding process employed to synthesize the hybrid polymer composite. Tensile strength, electrical conductivity and thermal expansion coefficient were measured as per the ASTM D638, ASTM D 257 and ASTM D 696, respectively. 50% Copper + 50% Polycarbonate outperform other combinations in terms of tensile strength, electrical conductivity, and coefficient of thermal expansion. In addition, scanning electron microscopy was also used to understand the homogenous mixture of hybrid polymer composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.