Abstract

Low-cost, durable, and high-performance membranes are urgent requirements for zinc bromine redox flow battery (ZBFB) applications. Sulfonated poly (ether ether ketone), SPEEK is a low-cost, ion-exchange membrane with excellent ionic conductivity, but its backbone is susceptible to the harsh bromine environment. Herein, the successful incorporation of a multifunctional nanofiller, perovskite-structured cerium titanate nanoparticles dispersed on smooth carbon nanofibers (p-CT/CNF) with varying carbon content into the polymer matrix protects the SPEEK backbone, reduces the crossover of active species and improves the selectivity of the composite membrane. At high current density of 100 mA cm−2, the SP-p-CT350 membrane in ZBFB shows an energy efficiency of 73.34% compared to pristine SPEEK and SP-p-CT320 with 70.32 and 69.71%, respectively. Interestingly, the excellent dispersion of the nanofiller notably reduces the self-discharge rate of SP-p-CT350, retaining the OCV at 1.70 V for 117 h which is 1.86 and 1.75 times greater than pristine SPEEK and SP-p-CT320. Furthermore, with the effect of loading to determine the durability of the SP-p-CT350 membrane, SP-p-CT350 with a nanofiller loading of 0.5 wt% demonstrates stable battery performance across 500 cycles at a current density of 40 mA cm−2 with an outstanding energy efficiency of 81.13%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call