Abstract

With the attempts of more than 30 years, the current commercial LiCoO2 (LCO) offers a reversible capacity of 185 mAh g−1 with a cut-off voltage of 4.5 V vs. Li+/Li. Further increasing the cut-off voltage, more lithium-ions can extract, deeply enhancing the capacity and energy density. However, it results in numerous side reactions and a significant decay in battery cycle performance. To address these issues, Nano-LiNbO3 as a coating agency is introduced by a solid-state surface-to-bulk modification process. To avoid the agglomeration and achieve uneven coating of Nano-LiNbO3 in the solid-state reaction, polyvinylpyrrolidone (PVP) is introduced as a dispersant, which effectively ensures the uniform and smooth coating along with the carbonization process. The modified LCO sample presents a specific reversible capacity of 215.5 mAh g−1 in the initial cycle and a capacity retention rate of 90 % after 100 cycles at 3–4.6 V and 0.5 C. Further analysis demonstrate that the LiNbO3 surface coating layer and the element gradient doping layer provide LCO a stable structure and an inert surface, which improves the surface stability, suppresses the oxygen release and ensures the enhanced electrochemical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call