Abstract
Novel visible-light-driven graphene oxide (GO)/AgBr nanocomposites were synthesized by a facile solution method. The GO/AgBr nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS) analysis, UV–vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectra (FTIR), and Raman spectra. The results indicated that AgBr nanoparticles were evenly distributed on the surface of GO and the heterostructures were formed. The photocatalytic activity of the as-prepared nanocomposites was evaluated by using Rhodamine B (RhB), Methylene blue (MB) and Methyl orange (MO) as target organic pollutants. The nanocomposites exhibit excellent photocatalytic activity for all of three dyes. Compared with bare AgBr particles, the GO/AgBr nanocomposites show better photocatalytic properties toward RhB pollutants. Additionally, the radical scavengers experiment indicated that O2− radicals was the main reactive species for the RhB degradation under visible light. The increased photocatalytic activity of the GO/AgBr nanocomposites was attributed to the strong coupling between GO and AgBr, which facilitated interfacial charge transfer and inhibited electron-hole recombination. A photocatalytic mechanism of GO/AgBr nanocomposites was also proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have