Abstract

AbstractSummary: The incorporation of comonomer molecules in the backbone of a homopolymer can influence the final properties of the material, decreasing its crystallinity and the melting and glass transition temperatures, and increasing its impact resistance and transparency. In the present work, ten ethylene/propylene copolymers have been synthesized using a supported metallocene catalytic system covering the whole composition range. Any desired composition was obtained by controlling the feed composition during the reaction. These synthesized copolymers have been characterized by different techniques in order to study the effect of the comonomer incorporation onto their final properties. When the comonomer content is low, the behaviour of the copolymer is similar to that of the corresponding homopolymer. Nevertheless, if the comonomer content increases, the copolymer becomes more amorphous (low crystallization temperature and soft XRD signals) and easily deformable, reaching a behaviour close to that corresponding to an elastomeric material. In order to corroborate these results the samples have been characterized by TREF and GPC‐MALS. TREF analysis showed that copolymers containing less than 10% and more than 80% of ethylene are semicrystalline, with elution temperatures typical of this kind of polymers. Molecular weights are higher for homopolymers and they decrease as the comonomer concentration increases, whereas the polydispersity index keeps almost constant at the expected value for this kind of samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.