Abstract

An ethylene‐bridged copolycarbosilazane precursor of copolysilylethylenediamine (co‐PSDA) is synthesized by polycondensation of ethylenediamine with the mixture of vinylmethyldichlorosilane and methyldichlorosilane in the presence of triethylamine as acid absorbing agent. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR, 1H NMR and 13C NMR) spectral analysis of the as‐synthesized co‐PSDA suggests a structure of ethylene‐bridged polycarbosilazane having –Si–N–C–C–N– as backbone chain with –CH=CH2, –H and –CH3 attached to Si as side groups. Co‐PSDA can be cross‐linked at 80°C using 2, 2‐azobisisobutyronitrile as initiator through the polyaddition of the vinyl group and dehydrogenation/deamination of Si–H and N–H. Then the cross‐linked co‐PSDA precursor is pyrolyzed at 1000°C in argon, giving out amorphous silicon carbon nitride (SiCN) ceramics with a high ceramic yield of 76 wt%. The obtained SiCN ceramics consist of nitrogen‐rich silicon sites of SiN4 as predominant component and some SiCN3 sites, which should arise from the breaking of N–C bonds below 600°C and the formation of active N–Si bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.