Abstract

Amorphous silicon carbon nitride (a-SiCN:H) films were synthesized using vapor transport-chemical vapor deposition technique. Poly(dimethylsilane) was used as a single source for both Si and C. NH3 gas diluted in Ar is used as a source for nitrogen. The composition and bonding states are uniquely characterized with respect to NH3/Ar ratio by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). Spectral deconvolution is used to extract the individual components of the FTIR and XPS spectra. For instance, the FTIR spectra show a remarkable drop in the intensity of SiC vibration accompanied by the formation of further bonds including SiN, CN, CN, CN, and NH with increasing NH3/Ar ratio. Moreover, the XPS spectra show the existence of different chemical bonds in the a-SiCN:H films such as SiC, SiN, CN, CN, and CC. Both FTIR and XPS data demonstrate that the chemical bonding in the amorphous matrix is more complicated than a collection of single SiC SiN, or SiH bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.