Abstract

The multidentate ligands tris[(N'-tert-butylureayl)-N-ethyl)]amine (H(6)1) and 1-(tert-butylaminocarbonyl)-2,2-dimethylaminoethane (H(2)2) have been used to investigate the assembly and properties of complexes with Cu(1.5)Cu(1.5) units. The complexes [Cu(H(5)1)](2)(+) and [Cu(H2)](2)(+) have been isolated and structurally characterized by X-ray diffraction methods. [Cu(H(5)1)](2)(+) has a Cu(1.5)Cu(1.5) core, with each copper ion having square planar coordination geometry. The copper ions are linked through two mono-deprotonated urea ligands, which coordinate as mu-1,3-(kappaN:kappaO) ureate bridges to produce a Cu-Cu distance of 2.39 A. The remaining two urea arms of [H(5)1](-) form intramolecular hydrogen bonds, the result of which is to confine the Cu(1.5)Cu(1.5) unit within a pseudomacrocycle. The structure of [Cu(H2)](2)(+) lacks intramolecular hydrogen bonds and thus does not have a pseudomacrocyclic structure. However, the structural properties of the Cu(1.5)Cu(1.5) core in [Cu(H2)](2)(+) are nearly identical to those of [Cu(H(5)1)](2)(+). Both complexes exhibit rhombic EPR spectra at 77 K, which do not change upon cooling to 4 K. The optical spectra of [Cu(H(5)1)](2)(+) and [Cu(H2)](2)(+) are dominated by an intense band at approximately 700 nm. These spectral characteristics are consistent with [Cu(H(5)1)](2)(+) and [Cu(H2)](2)(+) being classified as fully delocalized (type III) mixed-valent species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call