Abstract

The structures of five dicopper complexes of binucleating ligand HL-H (N,N,N',N'-tetrakis[(2-benzimidazolyl)methyl]-2-hydroxy-1,3-diaminopropane) with thiocyanate and some other counterions were investigated by the X-ray diffraction method. In Cu(2)(HL-H)(NCS)(2)Cl(2).6H(2)O.CH(3)OH, 1 (a = 12.524(5) Å, b = 14.429(4) Å, c = 16.343(3) Å, alpha = 109.01(2) degrees, beta = 92.62(2) degrees, gamma = 115.27(3) degrees, Z = 2, triclinic, P&onemacr;), one chloride is not coordinated. Distorted square pyramidal (SP) geometry is found for both CuN(3)ClN and CuN(3)ON coordination sites in which the N(3) tripodal coordination sites come from the two symmetric halves of HL-H and the other nitrogen atoms come from thiocyanate ions. In Cu(2)(HL-H)(NCS)(2)(ClO(4))(2).6H(2)O.2EtOH, 2 (a = 10.955(2) Å, b = 15.366(5) Å, c = 18.465(9) Å, alpha = 65.57(4) degrees, beta = 89.73(3) degrees, gamma = 79.81(2) degrees, Z = 2, triclinic, P&onemacr;), the coordination environments for the two copper ions are both CuN(3)ON. However, their geometries are different: one is distorted SP and the other is distorted trigonal bipyramid (TBP). In Cu(2)(HL-H)(NCS)(2)(ClO(4))(2)Cl.H(3)O.3.5H(2)O, 3 (a = 11.986(6) Å, b = 12.778(5) Å, c = 17.81(1) Å, alpha = 82.41(4) degrees, beta = 75.44(5) degrees, gamma = 78.46(4) degrees, Z = 2, triclinic, P&onemacr;), the chloride ion does not coordinate to copper ion, but it is hydrogen bonded to the hydroxy hydrogen. The coordination environments for the two copper ions are both CuN(3)ON with distorted SP geometries. In Cu(2)(HL-H)(NCS)Cl(3).6H(2)O, 4 (a = 12.026(5) Å, b = 14.369(6) Å, c = 16.430(6) Å, alpha = 111.64(3) degrees, beta = 90.51(4) degrees, gamma = 113.90(3) degrees, Z = 2, triclinic, P&onemacr;), one chloride does not coordinate. The coordination environments for the two copper ions are CuN(3)ON in severely distorted TBP geometry and CuN(3)Cl(2) in SP geometry. In Cu(2)(HL-H)(NCS)(3)OH.2H(2)O.3CH(3)OH.Et(2)O, 5 (a = 18.322(5) Å, b = 15.543(6) Å, c = 19.428(7) Å, beta = 102.78(3) degrees, Z = 4, monoclinic, P2(1)/c), the hydroxide ion does not coordinate. The coordination environments for the two copper ions are CuN(3)N(2) with a geometry inbetween SP and TBP but slightly closer to SP and CuN(3)ON in distorted SP geometry. The distances between the copper ions are in the range 4.45-7.99 Å, indicating negligible interaction between the copper ions. The hydroxy groups of HL-H in 1-5all coordinate to copper ions either in a terminal mode (in complexes 1, 4, and 5, denoted as OHR(t)) or in a bridging mode (in complexes 2 and 3, denoted as OHR(b)). These hydroxy groups do not lose their protons in all cases. All thiocyanate anions coordinate to copper ions through nitrogen atoms. All copper ions in 1-5 are pentacoordinated. The fact that the CuN(3) geometries of the tripodal coordination sites in HL-H do not allow the formation of a square planar complex, may be the driving force for the formation of pentacoordinated complexes. From the structurally known dicopper complexes of the HL-H type ligands, the relative coordinating abilities of ligands to CuN(3) are OHR(t) > NCS(-) > Cl(-)(t) > OHR(b) approximately Cl(-)(b), where the letters b and t in parentheses denote bridging and terminal coordination modes respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call