Abstract
This study explores the microstructure, spectroscopic, and bonding arrangements within bioactive calcium silicate and calcium magnesium silicate systems loaded with different values (1–2.5 wt%) Coenzyme (CoQ10) ratios, synthesized using sol-gel processes. The investigation utilizes X-ray diffraction (XRD), transmission electron microscopy, and Fourier transform infrared (FTIR) spectroscopy to analyze the samples. The study explores the assignment of FTIR bonds, examining changes in the silicate-based bonds environment under the effect of the CoQ10 ratio. The observed frequency shifts and intensity variations in FTIR bonds, linked with the bioactive silicate composition, are attributed to a reduction in local symmetry resulting from introducing the calcium and magnesium oxides and CoQ10 to the silica network. The XRD and FTIR results contribute valuable insights into the structural role of silicate-based materials loaded with CoQ10, thereby enhancing our understanding of the CoQ10 release process. Approval of the CoQ10 drug loading in both calcium silicate and calcium magnesium silicate nanosystems was recognized by shifts in FTIR bands, changes in particle distribution, and the valuation of drug release activity showed by the bioactive two calcium silicate-based nanoparticles. Additionally, wound healing studies revealed the biocompatibility and wound healing response of calcium magnesium silicate nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.