Abstract

The aim of present work was to synthesize and characterize carboxymethyl tamarind gum-polyvinyl alcohol (CMTG-PVA) hydrogel films using citric acid (CA) as a crosslinker. Hydrogel films were prepared by solvent casting technique. The films were evaluated for total carboxyl content (TCC), tensile strength, protein adsorption, permeability properties, hemocompatibility, swellability, moxifloxacin (MFX) loading and release, in-vivo wound healing activity and characterized using instrumental techniques. An optimal increase in amount of PVA and CA increased the TCC and tensile strength of the hydrogel films. Hydrogel films exhibited low protein adsorption and microbial permeation, good permeability to water vapour and oxygen, and sufficient hemocompatibility. The films prepared using high concentration of PVA and low concentration of CA showed good swellability in phosphate buffer and simulated wound fluids. MFX loading in the hydrogel films was found in the range of 384–440 mg/g. The hydrogel films sustained the release of MFX up to 24 h. The release followed Non-Fickian mechanism. ATR-FTIR, solid state 13C NMR and TGA analysis indicated formation of ester crosslinks. In-vivo study revealed good wound healing activity for hydrogel films. From the overall study, it can be concluded that the citric acid crosslinked CMTG-PVA hydrogel films can be effectively used for wound treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call