Abstract

Assam soft rice starch (ASRS) and Citric acid-esterified Assam soft rice starch (c-ASRS) were studied extensively. FTIR, CHN, DSC, XRD, SEM, TEM and optical microscope studies were performed for native and modified starches. Powder rearrangements, cohesiveness and flowability were studied by the Kawakita plot. Moisture and ash content was around 9 % and 0.5 %. In vitro digestibility of ASRS and c-ASRS produced functional RS. Paracetamol tablets were prepared using ASRS and c-ASRS as granulating-disintegrating agents through wet granulation methods. The prepared tablets' physical properties, disintegrant properties, in vitro dissolution and dissolution efficiency (DE) were performed. The average particle size was obtained at 6.59 ± 0.355 μm and 8.15 ± 0.168 μm for ASRS and c-ASRS, respectively. All the results were statistically significant at p < 0.05, p < 0.01 and p < 0.001. The amylose content was 6.78 %, classifying it as a low amylose type of starch. The disintegration time was reduced with the increasing concentration of ASRS and c-ASRS and facilitated the immediate release of the model drug from the tablet compact to improve its bioavailability. Therefore, the current investigation concludes that ASRS and c-ASRS can be used as novel and functional materials in pharmaceutical industries due to their unique physicochemical attributes. HypothesisThe central hypothesis of the current work was to develop citrated starch through a one-step reactive extrusion method and investigate its disintegrants property for pharmaceutical tablets. Extrusion is a continuous, simple, high-speed, low-cost, producing very limited wastewater and gas. Characterization was done through different instrumental techniques to confirm successful esterification. The flow properties were evaluated, and tablets were prepared at a different level of ASRS and c-ASRS (disintegrating agent), followed by the evaluation of tablets to confirm the model drug's dissolution and disintegration efficiency. Finally, in vitro digestibility of both ASRS and c-ASRS was analyzed to establish their potential nutritional benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call