Abstract

Objective: To synthesize, characterize and evaluate starch glycolate as a superdisintegrant in the formulation of Glipizide fast dissolving tablets by employing 23 factorial designs. Methods: Starch glycolate was prepared and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of Glipizide was prepared by employing starch crotonate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for the evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch glycolate prepared was found to be fine, free-flowing and amorphous. Starch glycolate exhibited good swelling in water with a swelling index (10%). The study of starch glycolate was shown by fourier transform infrared spectra (FTIR). The drug content (100±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) was been effective with regard to all the formulated fast dissolving tablets employing starch glycolate. The disintegration time of all the formulated tablets was found to be in the range of 13±0.015 to 180±0.014 sec. The optimized formulation F8 had the least disintegration time i.e., 13±0.015 sec. The wetting time of the tablets was found to be in the range of 8±0.015 to 95±0.013 sec. The In vitro wetting time was less (i.e., 8±0.015s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 75±0.012 to 150±0.014%. The percent drug dissolved in the optimized formulation F8 was found to be 99.95% in 5 min. Conclusion: Starch glycolate was an efficient superdisintegrant for fast-dissolving tablets. The disintegration and dissolution efficiency of the fast dissolving tablets of glipizide was good and depended on the concentration of superdisintegrant employed i.e., starch glycolate, sodium starch glycolate, crospovidone. The formulated fast dissolving tablets of glipizide exhibited good dissolution efficiency in 5 min which can be used for the fast therapeutic action of glipizide.

Highlights

  • Fast dissolving tablets emerge as one of the popular and widely accepted dosage forms, especially for pediatric patients because of incomplete development of the muscular and nervous system and a case of geriatric patients suffering from Parkinson’s disorder or hand tremors

  • The fourier transform infrared spectra (FTIR) spectrum of starch and starch glycolate was shown in fig. 1, 2

  • The presence of peaks absorption at 1727.18 cm-1 characteristic peaks of ester, so from FTIR studies it was concluded that starch glycolate was formed when starch was allowed to react with formic acid

Read more

Summary

Introduction

Fast dissolving tablets emerge as one of the popular and widely accepted dosage forms, especially for pediatric patients because of incomplete development of the muscular and nervous system and a case of geriatric patients suffering from Parkinson’s disorder or hand tremors. FDTs are disintegrating or dissolve quickly in the saliva without a need of water. FDTs have disintegrated quickly, absorb faster so, in vitro drug release time improves and this property of drugs (dosage form) enhanced bioavailability [6]. FDT formulations have the advantage of both conventional tablet formulation and liquid dosage form [7]. This review contains brief information about FDTs including definition, advantages, needs or requirements of FDTs, salient features of FDTs, limitations, challenges in developing FDT [9], etc

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call