Abstract

Boron-doped β-SiC (BxSiC) photocatalysts were prepared by in-situ carbothermal reduction, and their photocatalytic performances for H2 evolution under visible light irradiation were investigated. The crystal structure, surface property, morphology, and band gap structure of the BxSiC photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and ultraviolet-visible absorption spectroscopy. The characterization results indicate that B atoms have doped into the SiC lattice and substituted Si sites, leading to the formation of a shallow acceptor level above the valence band of SiC, resulting in a narrowed band gap energy. The shallow acceptor level acts as a hole trap, preventing the recombination of photo-excited electrons and holes. Therefore, the photocatalytic H2 evolution activity of B-doped SiC was greatly improved compared with that of SiC. The highest hydrogen evolution rate was obtained when the B/Si molar ratio was 0.05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.